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An investigation is carried out on the effects of Brownian agitation in the motion of 
small particles in a carrier gas in situations far from equilibrium. Although the 
standard near-equilibrium closure of the hydrodynamic equations is not valid for the 
heavy particles, the smallness of their speed of thermal agitation allows an 
alternative systematic hypersonic closure. The hypersonic equations are solved for 
two known instances where the kinetic Fokker-Planck equation describing the non- 
equilibrium particle distribution function admits exact solutions. These problems are 
characterized by a null or a spatially constant value for the gradient of the velocity 
field in the carrier gas, both being free from boundary surfaces. In  the first case, 
where the background velocity is uniform, a fundamental solution (expressed as an 
integral) is obtained for the steady flow of particles from a point source ; this result 
has obvious applications for the description of the Brownian broadening of particle 
streamlines. An asymptotic integration of the fundamental solution yields analytical 
expressions for the particle hydrodynamic properties valid everywhere except 
near the source, where a direct integration of the Vlasov equation completes the 
description. The exact solution for the second example, where the background 
velocity field gradient is uniform, is taken from the literature. Once these reference 
solutions have been established, the hypersonic equations are attacked by a variety 
of methods. In  particular, for the uniform steady flow, a boundary-layer analysis 
yields analytical results identical to those obtained from the asymptotic evaluation 
of the kinetic fundamental solution. In both problems, the agreement found between 
kinetic and hydrodynamic solutions is excellent even for values of order one of the 
inverse particle Mach number, the expansion parameter of the hypersonic theory. 

1. Introduction 
The motion of Brownian particles highly diluted in a background gas, and much 

smaller than any macroscopic length of the problem, can be described by making use 
of the standard diffusion equations only under near-equilibrium conditions. In  far- 
from-equilibrium situations the problem must be analysed within the substantially 
more complex framework of a kinetic theory. The inadequacy of the continuum 
results has already been pointed out by Einstein (1908) for the problem of a pulse of 
particles suddenly injected in a fluid, a situation where a non-equilibrium relaxation 
arises initially and lasts several particle relaxation times 7 (see (2) for its precise 
definition). A more complete description of the kinetics of a pulse of Brownian 
particles injected a t  time zero into a quiescent fluid was given by Chandrasekhar 
(1943) based on the kinetic Fokker-Planck equation. This equation was also used by 
Kramers (1940) to describe diffusion in a harmonic potential and across the peak of 
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a potential barrier, a problem where non-equilibrium phenomena arise when the 
spatial gradient of the acceleration field (the curvature of the potential) becomes 
comparable with the inverse square of the particle relaxation time 7 .  Brownian 
motion may thus occur within the kinetic regime either in initial or boundary layers 
where particles are injected or absorbed, or as the result of sufficiently inhomogeneous 
or rapidly varying force fields. 

A problem analogous to that in which the particles are driven by an external field 
arises when they are carried within a given fluid velocity field V ( x ,  t ) ,  whereupon they 
are subject to a viscous acceleration in the direction of their velocity relative to V. 
Under those conditions, non-equilibrium effects occur when the product of 7 with 
either the fluid velocity gradient or a frequency characteristic of the time variation 
of Vis not negligible (FernQndez de la Mora & Rosner 1982). Such a circumstance is 
often of practical interest, arising when the particles are sufficiently massive to be 
strongly decoupled from the fluid motion (a situation incompatible with the notion 
of equilibrium), but not so large for their Brownian motion to be completely 
negligible. Problems of inertial impaction where an aerosol suspension encounters a 
solid obstacle and the particles have enough inertia to collide against it with finite 
velocities are typical of this behaviour (Friedlander 1977, Chapter 4). Of particular 
interest to us is also the problem where the particles in a dusty gas are 
aerodynamically focused by acceleration through an axisymmetric converging 
nozzle and concentrated into a focal region much narrower than the exit area of the 
nozzle (Pernandez de la Mora & Riesco-Chueca 1988). In this case, Brownian 
diffusion sets limits to the minimum focal width attainable, in analogy with the 
phenomenon of optical diffraction. 

Keeping these practical problems in mind, the objective of this paper is to describe 
several instances of exactly solvable problems of non-equilibrium Brownian motion 
and to compare them with the results of an approximate hypersonic method of 
solution which exploits the smallness of the particles’ thermal velocity relative to 
their mean convective speed (Freeman 1967; Freeman & Grundy 1968; Hamel & 
Willis 1966; Edwards & Cheng 1966; Fernindez-Feria 1989). The problems will be 
attacked at  the kinetic level by means of the well known Fokker-Planck (F-P) 
equation governing the velocity distribution function f(t, x, u )  of the heavy particles, 

at 

which holds for both heavy molecules and Brownian particles, under a broad range 
of conditions described elsewhere (Resibois & DeLeener 1977 ; Wang Chang & 
Uhlenbeck 1970; Fernindez de la Mora & FernQndez-Feria 1987). In ( 1 )  7 is the 
particle relaxation time, related to the mixture diffusion coefficient D through 
Einstein’s law 

kT7 D = - ,  
mP 

where k is the Boltzmann constant, T the absolute temperature-of the carrier gas, mp 
is the mass of the particle and W is the sum of the mean velocity of the light gas U 
and the thermophoretic drift velocity, proportional to the gradient of temperature 
through the mixture thermal diffusion ratio aT: 

W = U+ Da, V In T.  

Because a direct solution of the F-P equation is rarely feasible, other approximate 
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techniques of solution have been implemented. Mild non-equilibrium situations 
where the particle partial pressure Pp is still approximately isotropic can be treated 
a t  a hydrodynamic level by adding an inertial drift term to the usual Fick diffusion 
term relating the velocity of the two components (Fernandez de la Mora & Rosner 
1982) : Up = U-DVlnp,-r(U. V) U, 

where Up and pp are the particle mean velocity and density. This additional drift is 
nearly equivalent to the pressure diffusion term in the standard first-order 
Chapman-Enskog theory. But the expression is restricted to small values of rVU, or 
equivalently, of the so-called Stokes number, or inertia parameter 

s = 7 / t f ,  

where t ,  is a characteristic time of the flow. Beyond the range of small 8, the pressure 
tensor becomes non-isotropic and the problem enters fully into the kinetic regime. 

The problem may also be attacked numerically via Brownian dynamics 
simulations based on the equivalent stochastic Langevin equation. The technique is 
demanding computationally, but far less so than standard Monte Carlo simulations, 
and Gupta & Peters (1986) have successfully used it to describe the rates of particle 
collection on spherical targets under the simultaneous action of inertia and Brownian 
motion. The most complete results using such simulation are due to O'Brien (1990), 
who has computed particle densities, velocities and transitional temperatures in 
excellent agreement with our own analytical expressions (( 17) below). 

An alternative approximate procedure, which does not require such specialized 
numerical methods, is supplied by truncating the moment equations derived from 
the Boltzmann (or F-P) equation. Interestingly enough, whenever the mean 
convective velocity of the particles far exceeds their speed of thermal agitation, this 
reduction can be carried out systematically within a hypersonic theory containing 
the effects of Brownian motion. The problems discussed below provide a testing 
ground for the hypersonic expansion method and give insight about its range of 
applicability. A detailed account of the hypersonic approach to the F-P or the 
Boltzmann equation? for mixtures has been given by FernBndez-Feria (1989) 
together with comparison of its results with exact solutions or experiments for one- 
dimensional problems (Fernandez-Feria & Fernindez de la Mora 1987 a, b ; Riesco- 
Chueca, Fernandez-Feria & Fernandez de la Mora 1986). The first three moment 
equations of the F-P equation can be expressed as 

an 
$+V. (np Up) = 0, 

1 

mP 7 
np Up Up+-Pp = n p - (  W- Up) ,  U,) 

at (4) 

( 5 )  
a p  2n k $+V * (2Qp+ UpPp)+ (P, * V) Up+ [(P, * V) Up]' = -(TI- T,), 

7 

t This hypersonic closure for mixtures differs from the pioneering work of Hamel & Willis (1966) 
and Edwards C Cheng (1966) for pure gases in being applied only to the heavy component. 
Exploiting the fact that the relaxation scales differ widely for both components, the light gas is 
taken to be in equilibrium. Precedents of hypersonic closures in gas mixtures with large mass 
disparity may be found in Willis & Hamel (1967), Harris & Bienkowsky (1970) and Fernindez- 
Feria & Fernindez de la Mora (1987 a, b), among others. Kone of the earlier studies incorporated the 
effects of Brownian motion in the direction perpendicular to the particle streamlines. 
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where np, Up, Pp and 0, correspond to the usual hydrodynamic quantities (number 
density, velocity, pressure and heat flux) of the particle phase. Pp and 0, are defined 
in a reference system moving locally with velocity Up. 

The smallness of the heavy-species thermal velocity compared to its mean velocity 
is exploited by FernBndez-Feria (1989) to expand (3)-(5) in powers of the mass ratio 
m/mp < 1,  yielding the following equations : 

(6) 

(7) 

(8) 

ah 
--P+ (Up. V) h p + V .  up = 0,  
at 

au k 1 -+(up - V) Up+--(( T, - V) A, +v  - T,} = - 7 ( W -  Up), 
at mP 

i3T 2 -J+ ( Up * V) T, + (T, * V) Up + [( T, * V) UPIT = -(TI- Tp), 
at 7 

where Tp = mp Pp/kpp  and A, = In ( p p / p p o )  (ppo is a constant reference density). 
Equations (6)-(8) depart from (3)-(5) only through the neglect of the heat flux tensor 
0, in the energy equation. It can be proven (Fernindez-Feria 1989) that, in the 
absence of singularities, the results of solving (6)-(8) differ from the actual values p:,, 
q, 1: (the e standing for exact) in quantities inversely proportional to the heavy-gas 
Mach number (Mp = Up/(kTp/mp)f) : 

pp = p ; + 0 ( ~ ; 3 ) ;  up = q + 0 ( ~ ; 3 ) ;  T~ = T " ~ + o ( M ; ~ ) .  (9) 
If initially the heat flux tensor vanishes, the errors involved are even smaller (0(Mp4) 
for the density and velocity; 0 ( M i 2 )  for the temperature). Notice also that, because 
the carrier gas molecules have a mass m typically much smaller than mp, mp/m $- 1, 
the condition of hypersonicity Mp $ 1 is compatible with moderately subsonic light- 
gas flows. 

The closed system of equations (6)-(8) will be referred to throughout the paper as 
the hydrodynamic hypersonic equations (HH). 

2. Steady expansion of a jet of particles from a point source into a 
uniform background gas 

2.1. Description of the problem and fundamental steady solution 
In  this section an ideal point source with an output rate n' particles/s is considered, 
where the particles are radiated a t  the source with a Maxwellian velocity distribution 
function A( U,, To) with a mean velocity Uo and a temperature q. The background 
gas is moving a t  a uniform speed U, in the same direction as the seeded particles and 
is a t  a uniform temperature G. The origin of coordinates is placed a t  the source, while 
the x-axis points in the direction of Uo = Uoe,. In  what follows, a cylindrical 
coordinate system with axis pointing along e, is used; the radial coordinate is 
denoted y ,  while ey is the corresponding unit vector pointing away from the x-axis 
and e, refers to the unit vector in the azimuthal direction. I n  52.5 the description is 
extended to the two-dimensional problem (infinitely long straight-line source) where 
Cartesian coordinates are used: the x-axis is in the direction of U,,, the z-axis is 
coincident with the source and the y-axis is perpendicular to x and z. 

Under the assumptions p / < 1, m/mp < 1, the problem is described by (1) with 
W = U,, T = Tb after dropping the unsteady term 8fp/at. A direct solution of this 
equation does not exist; but an integral representation can be obtained (similar 

p.p 
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approaches, sometimes referred to as Green-function methods are used, for instance, 
by Nguyen & Andres (1981) and Menon, Kumar & Sahni (1986)) : 

where fF(t) (fundamental solution) corresponds to the evolution in time of an initial 
pulse injected a t  t = 0 in x = 0, particles being injected a t  the source with the same 
Maxwellian velocity distribution function A( U,, T,) and unit number density. The 
steady problem is thus described as a superposition of transients. The following 
paragraphs are devoted to the fundamental solution fF. 

The expression for f F ,  given by Nguyen & Andres (1981) is an extension of previous 
results obtained by Chandrasekhar (1943) for the much simpler case of an initial 
Delta-function velocity distribution. For reasons which will become evident 
subsequently it is convenient to display its structure together with the equations 
coupling the various functions involved. The basic idea is to try a Maxwellian 
distribution for fF with number density nF, mean velocity U, and temperature TF, 
such that 

where s = t/7, r is the position vector, I is the unit tensor, and the other magnitudes 
have been replaced by their dimensionless counterparts as follows : 

n U T r f U+-, T t - ,  r c -  ft- n+- 
(ub7)3' 'b Tb ('b 7) ' (q 7)3 ' 

Defining the parameter e: = 21cTb/mp Vb, which describes the degree of hyper- 
sonicity, and inserting the resulting Maxwellian 

in the F-P equation, three differential equations for n,, U, and TF are obtained. As 
could be expected, they correspond to the three first moment equations (continuity, 
momentum and energy) with the particularity that, as a result of the symmetry of 
the Maxwellian distribution, no heat flux term appears in the energy equation. 
Therefore, for this particular example, the known solution for the complete time- 
dependent initial source problem coincides exactly with the hypersonic solution 
(equations (6)-(8)) to that same problem. The equations one obtains are 

2;-uo = 0, A'+3v0 = 0,  (13% b )  

h;+2v,AI = 0; v;+v0+v;+20h, = 0;  (13c, 4 
8'+2(0v0+0-1) = 0, (13e) 

where primes denote derivatives with respect to  s = t/7. 
It would appear from (13a-e) that the problem is hydrodynamically closed, as one 

might be tempted to start the integration from initial conditions obtained by 
equating f F  at time s = 0 to the seeding Maxwellian distribution A( U,, To). It is 
important, however, to draw the line between the seeding distribution, which 
indicates the velocity statistics of the particles irradiated at  the source, and the 
actual particle distribution function in the immediate vicinity of the source. The 
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FIGURE 1 (u, b ) .  For caption see facing page. 

initial conditions for the integration of (13) have to be obtained from a local kinetic 
analysis at the source, closely parallel to the analysis carried out later in $2.3. Some 
of the variables (wo,A) turn out to be singular at s = 0, while the initial condition for 
8 (O(0) = 0) bears no connection to the initial temperature T, of the seeded particles. 
Details are not given, but i t  can be verified that (13) are indeed satisfied by the actual 
solution : 

uo = 1 +6ePs; zo = s+&; A = -$ln(mEa), (14a-c) 

uo = c / a ;  e = d / a  ; A,  = - I / (~€ ; ) ,  (14d-f 1 
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FIQURE 1. Profiles of (a) the particle density, (b)  axial velocity and (c) axial temperatures 
(n/N'(U,T)8, u/U,,, T,,/T, as a function of x / U b r )  along the axis in the point-source expansion 
problem, for S = 0 (i.e. U, = U,) and different values of a = To/% (E,  = 0.15 and N = 1 : A, 
a = 1 ; 0, a = 0.5 ; 0, a = 0), obtained from the numerical integration of the F-P equation. The 
far-field near-equilibrium solution (equation (18)) is also plotted for large values of x/ (Ubr) ,  as well 
aa the asymptotic Laplace integration results given in (27 ) ,  (28)  and (50) (solid symbols). In  (b ) ,  the 
Vlasov approximation for the velocity (equation (24b))  is also represented for small values of 
X / ( u b T ) .  The agreement between numerical and asymptotic integration of the F-P equation is 
equally good for other values of 6. 

x/ub7 

where the functions a(s),  b(s) ,  c(s) and d(s)  are given by 

b = 1-e-', a = ab2+2.s-3-ee-28+4e-s, c = $$ = b(l-e-S+ae-8), 
(15a-c) 

d = a[l -4e-8+ (29- 3) e-28] + 28-4 + 8 e+- (29+4) e-zs, ( 1 5 4  
while the constants a and S are related to the initial conditions of the seed particles : 

a = T,/Tb, 6 = (u()-ub)/ub. (16) 

Alternatively, the evaluation of fF can be carried out at  a strictly kinetic level, 
following Chandrasekhar (1943) in the application of the method of characteristics to 
the Fourier transform of the F-P equation. In that way, the structure of the solution 
results naturally from the characteristic invariants. 

Once the fundamental solution fF is known one can turn back to the steady 
problem and determine the particle phase hydrodynamic magnitudes n, U = 
ue, + ve, and T = T,, ex e, + Tug eveY + T,, e, e, + T,,(e, ey + e, ex)  (from symmetry 
considerations, T,, and Tyz are zero) by using their definitions based on integrals of 
fp in velocity space and interchanging the order of velocity and time integration. In 
terms of nF, VF and TF as defined in (11) one obtains 

72 = N' J: nF ds, N' 1; nF U,ds, (17a, b )  
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where N’ = n’r and the same normalization as introduced in (12) is used. The above 
integration leading to n, Uand T can be carried out numerically. Figure 1 (a--c) shows 
the n, U and T,, profiles along the axis for different values of u and 6 = 0 (equation 
(16)) in the case where eb = 0.15 and N’ = 1. In the following paragraphs, some 
particular cases or regions of the flow will be thoroughly analysed and compared later 
with results from the HH equations. 

2.2.  F a r j e l d  ( r  % ub7,r % U,r) 
In  this limit most of the contribution to the integrals (17) comes from pulses radiated 
far back in time. This feature opens the door to an asymptotic integration scheme in 
which the functions a, b ,  c and d are approximated by the leading term of their 
polynomial expansion for s $ 1, and the resulting integrals, which turn out to be 
analytically solvable, are carried out to  yield 

N - ( r - x )  

u = 2 (e, + e, (1 + $)) , 
T = I (  1 -$[ 1 +$I) + i e ,  e, (1 + 2 $), 

where eT = r / r  and x = r - e,. The above solution is exactly coincident with the 
results from a near-equilibrium hydrodynamic formulation (continuity, diffusion 
law, pressure tensor/viscosity relation), which in physical variables can be expressed 
as 

The last equation reduces to the standard Navier-Stokes form by using the relation 
,up = S P D  which corresponds to an effective Schmidt number Sc = ,up/ppD = i, 
consistent with previous values given for Sc (Fernandez de la Mora 1982) in problems 
under the F-P assumptions (large mass disparity and dilution of the heavy species) : 

P, = n,kTb/-,up(VUp+VU,T). 

The diffusion solution (18) is plotted in figure l(a-c) together with the exact 
numerically integrated solution. The diffusion regime can be observed to  set in only 
for distances from the source between 5 and 10. 

v . (npUp)=O,  Up-Ub=-DVhnp, q =  Tb(/-$(VUp+VU:)). 

2.3. Vicinity of the source 
Spatial gradients are large close to  the source, so that the streaming operator in the 
Boltzmann equation is dominant with respect to the collision term. Hence, a t  
distances r G U0r ,  not only is the effect of self-collisions neglected (which is a 
standard feature of the Fokker-Planck equation) but also that of cross-collisions. 
The kinetic behaviour is thus described by the so-called Vlasov equation : 

(19) 

according to which the distribution function is conserved along phase-space 
trajectories (straight lines with constant velocity). Because the background fluid 

tap * V)fP = 0, 
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properties are now irrelevant, we base the new dimensionless variables on the particle 
injection properties U,, To, as follows: 

Obviously, this notation excludes the case a = 0, which will be considered later. The 
molecules radiated at the source are distributed in velocity space according to a 
Maxwellian velocity distribution g, : 

gu d3w = (m:)-iexp ( -  (u-e,)’/e:)  d3v. 

I n  spherical coordinates (u = ( V ,  8, $), where V is the magnitude of the velocity, the 
distribution becomes 

gM PdVdQ,  = ( n s ; ) - ~ ~ e x p  -- , [~in~8+(V-cos8)~]  dVdQ,, (21) 

where dQ, = sin 8 d8 d$. The marginal density function gn = SF gM V dV gives the 
fraction of the total output of molecules which point in the direction specified by the 
solid angle element dQ,, so that by continuity: 

1 ( B 

N’g,  dQ = nU, r2 dQ, (22) 

where U, is the mean velocity in the radial direction. Upon comparison of (21)-(22) 
with the normal kinetic definition of the mass flow density 

nu, = fvrd3u, 

where vT is the molecule velocity in the radial direction, it follows that the velocity 
distribution function a t  r is 

I 
[(v, - cos 8)2 + sin2 81 

where H(v,) is a unit step function (H = 1 for v, > 0, H = 0 otherwise) and S(s) is the 
Dirac distribution. According to (23), the temperature in the radial direction is of 
order unity while it is zero in the transverse directions, and only outflowing molecules 
exist close enough to the source. The hydrodynamic quantities around the source can 
now be obtained by integration : 

n =  fd3w, U = -  vfd3v, (u-U)(u-U)fd3w. I n ‘ I  
Carrying out the above integrals, exact analytical expressions are derived for n, U 

and T for the case where a =l 0 :  

3eOQ 4 1+-+- 
cos8 2cos28 

€0 Q 1 +- 
U =  e,cosO + O ( r ) ,  

cos 6, 

1 + 3 6 ” & + 2 L ( 2 & 2 2 )  
cos8 cos26 

cos 8 

T = ere, , 
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FIGURE 2 (a, b) .  For caption see facing page. 

exp ( - cos2 Ole:) 
n: erfc ( - COB elE,,) * 

Q =  - 

Figure 2 shows profiles of density, velocity and radial temperature as a function of 
6 according to (24) for different values of e,,. The density profile flattens out as eo 
increases (initial Mach number decreases). In the hypersonic limit .so + O ,  the velocity 
tends to the function U = cost9 (161 < in). Another interesting property of (24) is the 
fact that, regardless of e0, the radial temperature for 6 = in takes the constant value 
T , ( 2 - @ ) .  It is important to note that the Vlasov analysis is not restricted to small 
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FIQURE 2. (a) Particle number density, ( b )  velocity and (c) radial temperature ( n ~ ~ / [ n ’ ( U , 7 ) ~ ] ,  
U/U,,  T,,/T,, where T,, = e; T .  e,) very close to the source (r < 1) (see (24)) as a function 
of the angle 0 from the seeding direction for different values of the hypersonic parameter 
eo = 2kT,/rnpU2, (Vlaeov solution): co = 0.1 (+), co = 0.25 (O), c0 = 0.5 (M), e0 = 1 (A). 
The density is represented with a scaling factor r2, as follows from (24a). 

values of e0 and therefore covers a much broader range of situations than the HH 
analysis in the vicinity of the source. 

The same conclusions could alternatively be reached by expansion in powers of s 
of the integrands in (17) (in the vicinity of s = 0, the functions a, b, c and d given in 
(15) can be expanded in powers of s and substituted in (14), (11) to yield integrable 
expressions). The result is an expansion in powers of the radial distance r ,  whose 
leading term is in exact agreement with (24). 

The case of initial zero temperature, a = 0, requires a separate treatment. The 
Vlasov equation does not provide any information except for the trivial result that 
the initial Delta distribution remains approximately unchanged close to the source. 
One needs to take into account the effect of cross-collisions, ignored by the Vlasov 
model, in order to perceive any change from the initial distribution function. On the 
other hand, the asymptotic integration of (17) becomes considerably more complex 
than in the case a 9 0, because the lowest-order term of the integrand’s expression 
does not allow a direct analytical solution. However, good approximations for the 
integrals in (17) can be obtained by using the Laplace method discussed in the next 
section. 

2.4. Asymptotic integration in the hypersonic limit eb + 1 

The integrals in (17) can be written in the general form SF n,F(s) ds, 

with F(s )  = 1, U,, U, U, and TF, respectively. The small value of e,, in the 
exponential term leads to a very rapid decay of the integrand around the minimum 
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absolute value of the exponent. Evidently, particles have a negligible number 
density except in the region of interest where the inner variable 

?b Y/'b 

takes values of order one and the factor exp [ -T,I;/u(s)] has a slow variation. Most of 
the contribution to the integral occurs in the vicinity of the value so of s at  which 

xo(so) = x. 

In that narrow region one may give a simplified local description of the integrand and 
evaluate I ( F )  asymptotically. Defining the new independent variable 

for x > 0,  ( 2 5 )  may be written asymptotically as 
cc 

dz (neg)-gG(x) exp ( - z 2 / s ; )  

with 

Expanding G in Taylor series around z = 0 and integrating, it follows that 

Naturally, this description fails in the vicinity of x = 0, where a(s)  is singular, and the 
proper local approximation was discussed earlier in $2 .3 .  

To lowest order, (26) implies that  

no = "4 4 8 0 )  uo(%)I-l exp [ --T,I:/4%J1, (27 a )  

(27 b )  '0 = 'F('0) = u O ( s O )  e, + yb vO(sO) ey' 

The temperature tensor may be decomposed into two contributions, T = T,+ TT, 
which we shall call 'convective ' and 'thermal ', respectively : 

2 
nT, = 7{NI(  U, U,)-nUU), 

'b 

TT = /I(!Z',) = r9(s0)/+O(sE). (28b)  

Evidently, the determination of T to lowest order requires computing n, U and 
I( UF U,) correctly up to order $,, which involves the cumbersome calculation of 
a2G/az2. To simplify the notation we define 

auo exp (?;/a) 2 

and rewrite (26) as 
n = I(1) = no(l +egM( l ) )+O(~; ) ,  
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Because the functions M involve double derivation of exp(-Tg/a), they are 
biquadratic polynomials of (aside from further q,-dependences in F(s ) )  : 

M ( F )  =A(F,so)T4,fB(F,so)rlk+C(F,s,), (31) 

where 

and the following F-invariant coefficients have been introduced : 

A = A , ( s ) F ;  B = Bo(s)F+B,(~)F’;  C = C,(s)F+C,(s)F’+C,(s)F” 

Notice again that the M(F)-functions depend on x and 7, (or y), not on s. But the x- 
dependence is given parametrically in terms of so by x = z,(s,). From (28a) and (30), 
T, may now be expressed to lowest order in ek as 

=2{.hf(UF Up)+M(1) VO UO-UoM(Up)-M(UF) UO)+O(E:). (32) 

Upon substitution of (31), it follows that the term in qt  is proportional to  
( UF- Uo) ( UF- U,), while the term in 71; is proportional to ( U, - V,) V;, 
+ VF(UF- U,), so that setting s = so and recalling ( 2 7 b ) ,  both terms are seen to 
vanish and T, becomes 

(33) T, = 4C2(so) W s o )  W s o )  + O(ei)-  

Hence, using (ZS), 

a ( 3 4 4  

(34c) 
d 

T,, = ;+O(4), 

where, as before, the primes denote s-derivatives, and the functions a ,  uo, v,, . . . are 
evaluated a t  s = so, where so is defined implicitly by the equation xo(so) = x. The 
other components of the convective temperature tensor are of O(&) or smaller. 
Therefore, to lowest order, T,, = EXz+8, T,, = T,,, and T = T,, = 8. For future 
reference, it is also convenient to obtain the next order approximation of the velocity 
U. From (30a, b) it follows that 

yy. 

u = u, + E:, U, + O(€t), 

where 

= Bi(so) Wso) G+ Ci(sJ VF(so) + Cz(~o) &(so)- (35) 

In figure 1 (a-c), the lowest-order Laplace expressions for n, u = U, and %,, 
respectively given in (27a), (27b)  and (14f) together with (34a), are plotted along the 
axis for the same example as before (N’ = l , ~ ,  = 0.15). The agreement with the 
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results from a numerical evaluation of the convolution integrals (17) is excellent both 
along the axis and transversally to  i t  (not plotted). Equally satisfactory is the lowest- 
order approximation for v = U,, T,, and T,. (not represented), as well as the first 
correction to  Ugiven in (35) .  The accuracy of the Laplace expressions away from the 
ejection axis is good, provided that the transversal coordinate does not exceed values 
around qb = 5. 

2.5. Hypersonic (HH) results 

Having obtained exact expressions for the particle flow parameters, the hypersonic 
equations are now considered in order to test their accuracy against the kinetic 
standard. So fw,  the analysis was restricted to an axially symmetric geometry. The 
hydrodynamic approach allows the incorporation of the two-dimensional case in the 
same formulation. Let 4 be a parameter taking the value 1 for axisymmetrical flow 
and 0 in the two-dimensional case. The HH equations for the steady problem are 

where e2 = kT,/m, UZ, = $: and the normalization defined in (12) is used, while the 
operators D = ua,+va,, D, = T , , ~ , + T , , ~ , ,  D ,  = T,,a,+T,,a, are introduced. T,, 
stands for the azimuthal temperature in the axisymmetrical case. For the 
temperature components, a comma in the subscript denotes a partial derivative with 
respect to the variable following the comma. 

The underlying assumption for the H H  equations to hold, E' 6 1, can be further 
exploited to find an approximate solution to  (36) .  In  other words, the region around 
the axis can be considered a boundary layer where rescaled variables are introduced : 

v = EW, y = €7, T,, = EB,,. 

Taking into account that  u depends on y only to  order e2, 

u = uo(z) + 2u1(z, 7). 

To lowest order one obtains (d/ds = = uo a, + w a,) : 
Af +u,,+w,+(bw/?j = 0, ( 3 7 4  

u;+u0-1 = 0,  (37 b) 
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Equation (37 b)  can be parametrically solved to obtain 

x = s+S(1-ee-8), uo = l+Se-#. (38) 

If the structure of previous results for the Laplace solution to the F-P equation is 
recalled, one can postulate the existence of exact solutions to (37) of the form 

A = A , ( X ) + ~ ~ A , ( ~ ) ,  T,, = e,,(z), T~~ = e w ,  T,, = ax), 

exy = rP(4, w = v o ( x ) ,  u1 = p(x) +q2q(x ) .  

For functions depending only on x the notation ' = d/ds = uod/dx is preserved. 

( 3 9 4  

(394  

Thus, the governing equations become 

A;, t WJ 1 + 9) + u;/uo = 0 ,  

A', + 2w0 A, = 0 ,  

v ; + v o + v : + 2 e ~ ,  = 0, 

6 ' + 2 ( 6 ~ ~ + 8 - 1 )  = 0, 

e;, + 2e,,(1 + u;/uo) - 2 = 0, 

p' +p(2v0 + 2 +u;/uo) + e,, v;,/uo + 2eq = 0, 

P' + P[l + U;,/UOl+ ex, A;luo + K,/u, + p(9 + 1) = 0, 

q' + q[i + u;,/uol + 2qv0 + e2, A ; / U ~  + 2 p 4  = 0, 

(394 

(39f 1 
(399) 

(39 h) 

c + 2 ( c - 1 ) = 0  (for$=O); {=i9 ( f o r + = l ) .  (39 i )  

Notice that ( 3 9 M )  are identical to (13c-e) describing the time-dependent initial 
source problem, and that they are decoupled from the rest ; their independence from 
q5 indicates that the solution (14e-g) holds for two-dimensional as well as 
axisymmetrical situations. As before, the singularity of the problem at the source 
precludes a hydrodynamic closure. The boundary conditions for (39) have to be 
obtained from kinetic arguments; one gets wo = c/a,  8 = d/a,  while A, = - 1/2a (a 
different factor from the time-dependent one, because of the different normalization), 
where the functions a, c and d are s-dependent. This is not a real time-dependence 
as in the fundamental solution, but a parametric representation of the 2-dependence 
through (38). 

All the other equations are different in the two problems. In particular, the 
temperature is no longer a scalar in the steady case and therefore requires further 
equations for its complete specification. Equations (39a, e) can be separately solved : 

(404 

(40 b)  

where the condition 8,,(0) = a, resulting from the kinetic (Vlasov) analysis, has been 
used. The remaining equations (39 f-h) are coupled and no attempt has been made to 
find an analytic solution. It is not a surprise that the lowest-order ' expressions 
obtained with the above method €or the density (Ao, A,), velocity field (uo, vo) and 
normal temperature components (e,,, OVu and O,,) in the axisymmetric problem are 
exactly coincident with those resulting from the Laplace integration of the F-P 
equation (given in (27 )  and (34)). It is therefore likely that analytical solutions for p ,  
p and q exist and, moreover, that they are identical to the Laplace results given in 
(34 b ) ,  (35). These coincidences together with the excellent agreement found earlier 

Ao, = -In [uo a(1++)/2] + const, 

Ox, = e-"[e2' - 1 +a( 1 + + 4S(e8 - 1) + 2S2s]/u:, 
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between the exact solutions and the Laplace integrals imply that the hypersonic 
theory in the near-axis approximation is remarkably accurate. 

The starting behaviour of p ,  q and /3 can be obtained by expanding all the known 
functions involved in (39f-h) in powers of 8, retaining only the leading terms and 
trying for p- ,  q- and p-solutions of the form p = p n  spl ; q = qo sql and p = b, sbl. When 
a = 0 one obtains 

1 2 p=- 5 
( 1  4- 6) 8' ' 3(1+6)'  

p = --(#(1++-2), q = 
1 + S  

In dimensional variables, for a = 0:  

These results can also be derived from the Vlasov solution (24) by expansion in 
powers of 8, in the limit where 0 z 2/12 4 1 .  

In the case a =k 0, the results are q = 0, p = a/ (s ( l  + S ) )  (meaning that Tzy departs 
from its original zero value at the source as T,y/x), while the determination of p 
requires going one further step in the s-expansion and has not been carried out. 

As an alternative path to the same conclusions i t  can be shown that t h e  HH system 
(36), has a similarity solution in terms of the variable 6 = y / { e ~ ( ~ - ~ ) ~ * }  close to the 
source. This feature permits (36) to be written as a set of ordinary differential 
equations in terms of 5. The results are coincident with the above solution. 

3. Two-dimensional stagnation-point flow 
As an example of application of the HH equations, the case when particles move 

in a background gas with a linear flow field is considered. This is a logical extension 
of the previous example, though the coverage will be less thorough than before and 
will be restricted to the two-dimensional geometry. The preceding example illustrated 
a situation with no spatial gradients in the fluid driving fields T and U ,  where all the 
non-equilibrium could be ascribed to the injection conditions. In the present 
problem, non-equili brium arises owing to the velocity gradients in the background 
gas. 

3.1. Results from the kinetic solution 

Consider two opposed jets, with axis y = 0 and symmetrical with respect to the plane 
x = 0. If viscous effects are ignored, the stagnation region where the two jets meet 
can be assumed to have a locally linear flow pattern. In the two-dimensional case, i3e 
carrier gas velocity field can therefore be described by 

(see figure 2 in Fernandez de la Mora 1982 for a sketch of the flow field). The 
temperature of the carrier gas is assumed uniform and equal to T. In the symmetric 
problem, particles are injected from a constant y-independent source, in equal 
amounts a t  x+ 2 co : in the non-symmetric problem, particles are injected only at 
one side, x + CO. This is a model reasonably close to reality if the nozzle throat is wide 
enough compared to the size of the stagnation region. 
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Fenandez de la Mora (1982) found a special solution for this problem closely 
related to that given by Kramers (1940) for particles in a parabolic potential field. 
The solution is restricted to relatively slow decelerations, that is, for flow times 
u-l > 47. This condition can be expressed as S < 2 (subcritical flows) where S = or is 
the Stokes number. For S = a, inertia dominates the flow and this solution breaks 
down. In the subcritical case it can be shown (Fernandez de la Mora 1982) that the 
following hydrodynamic relations are exactly satisfied (under the y-independent 
seeding assumption) : up = (up,v , )  = (--a(wz+DA,,,),bwy), 

Tpxx = T(1 -a7up,.), 

(42a) 

(42 b )  

T,,, = 0, (42c) 

Tpyy = bT, (42 4 
(42 e )  - - 

QPXYV - QPXXY - QPYYY = 0, 

where a = [ 1 - (1  - 4S)t]/2S, b = [ - 1 + (1  + 4S)i]/2S and the density field is a 
function of z satisfying the following equation : 

D a-b  
- P p , x x + ~ : p p , x + - - P p  a = 0. 
W 

(43) 

The equation for the heat flux can be written in the form qpxxx = -A, Tpxx+x where A, 
is a conductivity coefficient, which in analogy to the Chapman-Enskog expression 
can be written as 

K 
A, = C--pp Da, 

mP 

where the proportionality constant C =  g is related in the usual form to the 
dimensionless numbers of Schmidt (Sc) and Prandtl (PT) : 

In  problems under the Fokker-Planck assumptions, Sc = and Pr = $, while y takes 
the value 3 in non-equilibrium situations, as will be illustrated in a later discussion. 

From (431, p p  = pP(6) where E = z(w/D)i .  Consequently, new dimensionless 
variables can be introduced : 

and the corresponding equations become 

A”+A’*+cA;h’+- (a-b) = 0, 
a ( 4 4 4  

u = - ~ ( [ + h ‘ ) ,  v = 67, (44 b)  

ex, = a(1 +SaA“), ex, = 0, O,, = 6.  (444 

The boundary conditions required to complete the integration of the above system 
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FIGURE 3 (a, b). For caption see facing page. 

of equations are provided in the symmetric problem by symmetry considerations at  
the stagnation plane : 

at E = O ,  A = 0 ,  A ' = 0 ,  8,,=1+Sab, ~ ' = - b .  

For large E the far-field solution is obtained: 

A' = - (a -  b) /a& u = -a& Ox, = a. 

In the non-symmetric problem, particles are injected only at one side of the 
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FIGURE 3. Stagnation point : particle hydrodynamic magnitudes in the symmetric problem ( (a )  
density : pR/pRo ; ( b )  axial velocity : - u/(aE), and (c )  axial temperature : BJa) as a function of 6, for 
S = on = 0.1 and 0.24. The kinetic solution of Fernindez de la Mora (1982) is represented as a 
continuous line; also indicated is the numerical solution of the HH equations, starting in the far 
field for Ma, > 1 (0) and the local expansion around 6 = 0 of the HH equations (m). 

stagnation plane (6 > 0) and they penetrate to the other side by diffusion and inertia 
against the mean motion of the host fluid flow. A t  this side, and far enough from the 
stagnation plane the gradients of density are large so that (43) becomes 

P,f + &, = 0, 
from which the asymptotic behaviour as 6 tends to - co for the n6n-svmmetric case 
is obtained : 

2 4 exp ( -~2/2)  a su p - erfc(-E/d2), A' = - 0 7c erfc(-E/42)' u = 5 '  O = l + - - .  EZ 
These expressions are uaed to start the integration of (36) a t  as sufficiently large and 
negative in the non-symmetric problem. 

3.2. Hypersonic ( H H )  solution 
Equations (6)-(8) can be written in full as follows (using the normalization 
introduced in 53.1): 

uAg+wA,+uc+v, = 0, (45 a )  

s(uu,+ uu,) + e,, A,+ e,, A, + ex,,,+ B,,,~ + t + u = 0, (45b) 

s(uv,+ vv,) + ezy A,+ e,, A, + ex,,,+ eVy, 11 -7 + ( 4 5 4  

s(ue,,,,+ve,,,,+2e,,uf+2e,,u,)+2(e,,- 1) = 0, ( 4 5 4  

s(uey,,f+ve,,,,+2e,,vg+2e,,v,)+2(e,,- 1) = 0, (45 e )  

fwe,,, f $- ve,,, 7 + ezx "6 + ~,,(v, + us) + O,, u,) + 28,, = 0. (45f) 

In  the y-independent case it can easily be checked that (45c, e ,  f )  are satisfied by 

= 0, 
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making v = bv, B,, = 0, e,, = b (using the definition of b,  Sb2+b-  1 = 0) while the 
remaining equations become 

uh’+u’+b = 0, (46a)  

If the exact solution (44a-c) is inserted here, the first two equations (continuity and 
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FIGURE 4. Stagnation point : particle hydrodynamic magnitudes in the non-symmetric problem ( (a )  
density: pp/ppo; (6) axial velocity: -u, and ( c )  axial temperature: Bzz/a) as a function of 6, for 
S = 0.1 and S = 0.24. The kinetic solution of FernLndez de la Mora (1982) is represented as a 
continuous line ; also indicated is the numerical solution of the HH equations, starting in the far 
field, for Mu, > 1 (0). 

momentum) are exactly satisfied, while a non-zero remainder is obtained in (46c). 
This is consistent with the method of truncation used to  obtain (46) where the heat 
flux has been dropped in the energy equation. Equations (46) may be cast in matrix 
form 

A *  W' = b,  

A = ( [ ,  SU ij; b = (  - ( f + u l ) ;  w = ( ~ ! , )  

(47 a )  

(47bd) 

1 - b  

0 2S8,, 2(1- 8 X X )  

The determinant of A is Su(Su2-38,,), so that the problem is singular for u = 0 
(stagnation plane in the symmetric case) and for u = f (38,,/X);, The latter 
singularity is associated with a sonic point Ma, = IV,l/e = 1, where c = (ykT,,/m,)f 
with y = 3. Using the far-field solution, the sonic point can be approximately located 
a t  tS = (3u/S)i. Integration of (47u) is started in the far field (large positive f )  and 
proceeds downstream, in the opposite direction as in the kinetically derived (44). 
However, the numerical integration becomes singular a t  the sonic point., Beyond the 
sonic point, the nature of the system of equations changes, and an initial-value 
condition is not sufficient to define the solution (both singular points u = -f. (38,,/X)i, 
u = 0 are unstable nodes in the subcritical case S < a). 

Figures 3 and 4 show profiles of p,  u, 8,, as a function of 6 in the symmetric and 
non-symmetric problem for two values of the inertia parameter (8 = 0.1, S = 0.24). 
The exact solution is compared to the hypersonic results in the supersonic region, and 
i t  can be observed that even in the vicinity of the sonic point, a good agreement 



660 P. Riesco-Chueca and J .  Ferndndez de la Mora 

exists. An expansion of the HH equations around 6 = 0 in the symmetric case can be 
carried out to compare both solutions inside the subsonic region. 

In the local HH solution (plotted up to three terms of expansion in figure 3) 

'g+..., (48) 
1 2~2b3 

h = -!pic'... , u = -bf;+kbA'g2.. . , e,, = ___ +- 
l - S b  1-4bS 

where A = 2Sb2( 1 - 2bS) (1  - bS)/( 1 - 4bS). On the other hand, the exact expansions 
are 

. . . , u = - b ( E + i (  1 -b/a) t3+ .  . .), ex, = 1 +Sub+ bS(a-  b)  t2+ .  . . . (b  - a )  c2 A =  
2a 

(49) 

If the a and b terms are expanded in powers of S around S = 0, (48) and (49) are seen 
to have a coincident initial behaviour : 

A = -S( 1 -S + . . .) E' . . . , u = - bg+ $bX( 1 -8 + . . .) E3,  
Discrepancies therefore arise with increasing values of S. 

An alternative method of solution for the HH equations with the clear advantage 
of holding throughout the whole range of velocities (subsonic as well as supersonic) 
consists in using a perturbative expansion in powers of S. Let u = u, +Xu, + . . . , 
eXx = 8, +SO, + . . . , A = A, +SA, + . . . . Upon substitution, a sequence of equations is 

ex, = 1 + S , . . + 28'6' 

obtained 
u,h;+u;+b = 0, 

u,h;+u,h;+u; = 0, 

u,u;+h;+e,h;+e;+u, = 0, 

el = -u; (51 c )  

which can easily be solved with the same starting conditions used in the integration 
of (44a-c). As shown in figure 5 (a ) ,  the convergence of the sequence of equations (50), 
(51), . . . is fast and the agreement with the exact solution is very good in the case of 
S = 0.1. As S grows (see figure 5(b), for S = 0.24) the convergence becomes slower, 
and the expansion diverges for S > a. 

Finally, some discussion is required on the validity of the H H  equations. 
According to (51c), the heat flux which has been dropped out from (5) has the 
following relative value with respect to other terms of the equation : 

Sah'" 
(6 + A') (1  +Sun") ' 

qPszz = - 
P,,, Up 

In the far field, this ratio is of the order of S6-4, that is, of S3Ma-4, so that provided 
that the Mach number is sufficiently large, the heat flux is negligible. In the 
subsonic region, the heat flux can also be neglected when the Stokes number is 
sufficiently small, or, alternatively, in the case of small temperature gradients 
((D/Tpxx U,)/dT,,,/dz) Q 1) .  Therefore, the validity of our truncation responds in 
the subsonic region to different physical reasons. No longer is it due t o  the prevalence 
of convection over conduction as a vehicle for energy transport, but to the vicinity 
to equilibrium conditions, on account of which viscous and heat conduction effects 
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FIGURE 5. Particle density (p,/pp0) as obtained from a perturbative solution of the HH equations 
in powers of S ((a)  8 = 0.1 and (b)  S = 0.24) in the symmetric stagnation point problem. The kinetic 
solution is plotted using a continuous line, and the different HH approximations (+, order zero ; 
a, order one; ., order two: 0, order three). 

become unimportant. The increasing importance of conduction effects as S grows can 
be observed in the figure. 

In conclusion, the HH equations are surprisingly accurate up to the sonic point for 
values of S of order unity and also fairly accurate even down to zero velocity for 
small values of S. Not atypically, the theory functions well beyond its expected 
region of validity for this problem. 
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4. Conclusions 
In  the present paper, a systematically truncated set of hydrodynamic equations is 

used which differs from previous hypersonic formulations in going beyond the 
deterministic level by retaining the pressure term in the particle momentum 
equation. A hydrodymamic description of Brownian motion can thus be achieved in 
a wide range of far-from-equilibrium problems. The examples chosen are rep- 
resentative because they cover separately the case of injection non-equilibrium, 
originating at a boundary (source expansion problem) and the case of bulk non- 
equilibrium, due to non-uniformities in the background gas (stagnation point 
problem). The agreement between kinetic and hydrodynamic predictions is very 
good for all circumstances tested, including several not clearly supersonic. Hence the 
HH equations provide an effective tool to  attack hydrodynamically a wide range of 
non-equilibrium Brownian motion problems whose direct kinetic solution would be 
extremely demanding computationally. The exact solutions developed here for the 
F-P equation should provide a useful standard against which to test other 
approximate theories. 
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